EMI Filter Design Example

This is a very small 1 hour session based on our 2 Day EMI Filter Design Workshop

Dr Ali Shirsavar
Biricha Digital Power Ltd
PSU Specification

- Input voltage \(\rightarrow \) \(V_i = 12V \)
- Output power \(\rightarrow \) \(P_o = 6.75W \)
- Efficiency \(\rightarrow \) \(\eta = 85\% \)
- PSU closed loop input impedance \(\rightarrow \) \(Z_{in} = 18\Omega \)
- Desired single stage filter output impedance \(\rightarrow \) \(Z_{o} = Z_{in}/10 < 2\Omega \)
- Input current \(\rightarrow \) \(I_{in} = V_i/Z_{in} = 660mA \)
- Switching frequency \(\rightarrow \) \(F_s = 200kHz \)
- Lowest frequency of interest \(\rightarrow \) \(F_h = 200kHz \)
- Harmonic number of \(F_h \) \(\rightarrow \) \(n = 1 \)
- PSU Loop cross over frequency \(\rightarrow \) \(F_x = 2kHz \)
- Reflected Ripple Current** @ \(F_h \) (no filtering, simulated) \(\rightarrow \) \(I_{rr, RMS} = 760mA \)
- Estimated Duty / \(\eta \) \(\rightarrow \) \(= 42\% \)
- Reflected Ripple Current @ \(F_h \) (no filtering, calculated) \(\rightarrow \) \(I_{rr, RMS} = \)
- Source Inductance \(\rightarrow \) \(L_{source} = 100uH \) (standard LISN)

Filter Specification

- Desired \(I_{rr} \) after filtering \(\rightarrow \) \(I_{rr, filtered, RMS} = 100dBuV \) (i.e. 2mA)
- Gain of single stage filter @ \(F_h \) \(\rightarrow \) \(Gain_{2nd, order} = 0.05 \)
- Single stage filter cut-off of frequency \(\rightarrow \) \(F_{c/o} = 10.3kHz \)
- Desired cut-off frequency of common mode filter \(\rightarrow \) \(F_{c/o, CM} = 75kHz \)

Filter Specification

- Desired Irr after filtering \(\rightarrow \) \(I_{rr, filtered, RMS} = 100dBuV \) (i.e. 2mA)
- Gain of single stage filter @ \(F_h \) \(\rightarrow \) \(Gain_{2nd, order} = 0.05 \)
- Single stage filter cut-off of frequency \(\rightarrow \) \(F_{c/o} = 10.3kHz \)
- Desired cut-off frequency of common mode filter \(\rightarrow \) \(F_{c/o, CM} = 75kHz \)

Filter Specification

- Desired Irr after filtering \(\rightarrow \) \(I_{rr, filtered, RMS} = 100dBuV \) (i.e. 2mA)
- Gain of single stage filter @ \(F_h \) \(\rightarrow \) \(Gain_{2nd, order} = 0.05 \)
- Single stage filter cut-off of frequency \(\rightarrow \) \(F_{c/o} = 10.3kHz \)
- Desired cut-off frequency of common mode filter \(\rightarrow \) \(F_{c/o, CM} = 75kHz \)

Filter Specification

- Desired Irr after filtering \(\rightarrow \) \(I_{rr, filtered, RMS} = 100dBuV \) (i.e. 2mA)
- Gain of single stage filter @ \(F_h \) \(\rightarrow \) \(Gain_{2nd, order} = 0.05 \)
- Single stage filter cut-off of frequency \(\rightarrow \) \(F_{c/o} = 10.3kHz \)
- Desired cut-off frequency of common mode filter \(\rightarrow \) \(F_{c/o, CM} = 75kHz \)

Filter Specification

- Desired Irr after filtering \(\rightarrow \) \(I_{rr, filtered, RMS} = 100dBuV \) (i.e. 2mA)
- Gain of single stage filter @ \(F_h \) \(\rightarrow \) \(Gain_{2nd, order} = 0.05 \)
- Single stage filter cut-off of frequency \(\rightarrow \) \(F_{c/o} = 10.3kHz \)
- Desired cut-off frequency of common mode filter \(\rightarrow \) \(F_{c/o, CM} = 75kHz \)

Filter Specification

- Desired Irr after filtering \(\rightarrow \) \(I_{rr, filtered, RMS} = 100dBuV \) (i.e. 2mA)
- Gain of single stage filter @ \(F_h \) \(\rightarrow \) \(Gain_{2nd, order} = 0.05 \)
- Single stage filter cut-off of frequency \(\rightarrow \) \(F_{c/o} = 10.3kHz \)
- Desired cut-off frequency of common mode filter \(\rightarrow \) \(F_{c/o, CM} = 75kHz \)

Filter Specification

- Desired Irr after filtering \(\rightarrow \) \(I_{rr, filtered, RMS} = 100dBuV \) (i.e. 2mA)
- Gain of single stage filter @ \(F_h \) \(\rightarrow \) \(Gain_{2nd, order} = 0.05 \)
- Single stage filter cut-off of frequency \(\rightarrow \) \(F_{c/o} = 10.3kHz \)
- Desired cut-off frequency of common mode filter \(\rightarrow \) \(F_{c/o, CM} = 75kHz \)

Filter Specification

- Desired Irr after filtering \(\rightarrow \) \(I_{rr, filtered, RMS} = 100dBuV \) (i.e. 2mA)
- Gain of single stage filter @ \(F_h \) \(\rightarrow \) \(Gain_{2nd, order} = 0.05 \)
- Single stage filter cut-off of frequency \(\rightarrow \) \(F_{c/o} = 10.3kHz \)
- Desired cut-off frequency of common mode filter \(\rightarrow \) \(F_{c/o, CM} = 75kHz \)

Filter Specification

- Desired Irr after filtering \(\rightarrow \) \(I_{rr, filtered, RMS} = 100dBuV \) (i.e. 2mA)
- Gain of single stage filter @ \(F_h \) \(\rightarrow \) \(Gain_{2nd, order} = 0.05 \)
- Single stage filter cut-off of frequency \(\rightarrow \) \(F_{c/o} = 10.3kHz \)
- Desired cut-off frequency of common mode filter \(\rightarrow \) \(F_{c/o, CM} = 75kHz \)

Filter Specification

- Desired Irr after filtering \(\rightarrow \) \(I_{rr, filtered, RMS} = 100dBuV \) (i.e. 2mA)
- Gain of single stage filter @ \(F_h \) \(\rightarrow \) \(Gain_{2nd, order} = 0.05 \)
- Single stage filter cut-off of frequency \(\rightarrow \) \(F_{c/o} = 10.3kHz \)
- Desired cut-off frequency of common mode filter \(\rightarrow \) \(F_{c/o, CM} = 75kHz \)

Filter Specification

- Desired Irr after filtering \(\rightarrow \) \(I_{rr, filtered, RMS} = 100dBuV \) (i.e. 2mA)
- Gain of single stage filter @ \(F_h \) \(\rightarrow \) \(Gain_{2nd, order} = 0.05 \)
- Single stage filter cut-off of frequency \(\rightarrow \) \(F_{c/o} = 10.3kHz \)
- Desired cut-off frequency of common mode filter \(\rightarrow \) \(F_{c/o, CM} = 75kHz \)

Filter Specification

- Desired Irr after filtering \(\rightarrow \) \(I_{rr, filtered, RMS} = 100dBuV \) (i.e. 2mA)
- Gain of single stage filter @ \(F_h \) \(\rightarrow \) \(Gain_{2nd, order} = 0.05 \)
- Single stage filter cut-off of frequency \(\rightarrow \) \(F_{c/o} = 10.3kHz \)
- Desired cut-off frequency of common mode filter \(\rightarrow \) \(F_{c/o, CM} = 75kHz \)

Filter Specification

- Desired Irr after filtering \(\rightarrow \) \(I_{rr, filtered, RMS} = 100dBuV \) (i.e. 2mA)
- Gain of single stage filter @ \(F_h \) \(\rightarrow \) \(Gain_{2nd, order} = 0.05 \)
- Single stage filter cut-off of frequency \(\rightarrow \) \(F_{c/o} = 10.3kHz \)
- Desired cut-off frequency of common mode filter \(\rightarrow \) \(F_{c/o, CM} = 75kHz \)

Filter Specification

- Desired Irr after filtering \(\rightarrow \) \(I_{rr, filtered, RMS} = 100dBuV \) (i.e. 2mA)
- Gain of single stage filter @ \(F_h \) \(\rightarrow \) \(Gain_{2nd, order} = 0.05 \)
- Single stage filter cut-off of frequency \(\rightarrow \) \(F_{c/o} = 10.3kHz \)
- Desired cut-off frequency of common mode filter \(\rightarrow \) \(F_{c/o, CM} = 75kHz \)
• Single Cell/Stage LC EMI Specification
 - Min Capacitance → $C_{1_{\text{min}}} = 8\mu\text{F}$
 - Max Capacitance → $C_{1_{\text{max}}} = 20\mu\text{F}$
 - Min Inductance → $L_{1_{\text{min}}} = 10\mu\text{H}$
 - Max Inductance → $L_{1_{\text{max}}} = 30\mu\text{H}$
 - Selected C_1 & Part No = $1 \times 10\mu\text{F} + (3 \times 4.7\mu\text{F on-board})$
 - Total C_1 after DC Bias Loss = $7.1\mu\text{F} + 12.3\mu\text{F} = \sim 20\mu\text{F}$
 - Combined ESR of C_1 @ Fs = $\sim 1\text{m}\Omega$
 - Frequency of ESR Zero due to C_1 → $F_{ESR0} = 8\text{MHz}$
 - Selected L_1 & Part No = $\sim 10\mu\text{H}$
 - Actual $F_{c/o} = 10\text{kHz}$
 - Actual Zo (not including L_{source}) = 0.7
 - Actual Zo (including L_{source}) = 2.3
 - Calculated Damping Cap → $C_d = \ldots$
 - Calculated Damping Resistor → $R_d = \ldots$
 - Actual Damping Cap → $C_d = 100\mu\text{F}$
 - Actual Damping R → $R_d = 0.42$
 - Q (not including L_{source}) = 1.7
 - Q (including L_{source}) = 5.6
EMI Filter Design Workshop

Day 1: Introduction to EMI Filter Design
- Filter design from ground up including LC & Pi filters with and without damping
- Power supply stability, Middlebrook’s stability criteria and input filter interaction
- Becoming comfortable with using spectrum analysers, LISNs and network analysers
- Using Biricha’s DC-DC EMI filter design software to speed up the design process
- Hands-on Labs, including:
 - LISN and Spectrum Analyser set-up for pre-compliance and EMC testing
 - Filter measurement with Bode100 network analyser
 - Step-by-step input and out filter design, implementation and testing

Day 2: AC/DC Line Filter Design
- Single Phase CCM Boost PFC topology operation & filtering needs
- Correct component selection, common mode chokes, differential mode choke, capacitors
- Designing high order/2-stage EMI filters
- AC-DC Line filter design & Biricha’s step-by-step Line filter design guide
- Hands-on Labs, including:
 - AC/DC Line filter design and measurement for PFCs
 - High order, 2 stage filter design and measurement
 - Correct filter component selection and routing

Aschheim (Near Munich)
June 19th to 20th 2018

For full details, syllabus and registration, please visit

www.biricha.com/emc
DC/DC Single Stage CM & DM EMI Filter Design Example

- **Cpi Design Calculations**
 - Rule 1: \(\text{Cpi} < \frac{C_1}{5} \)
 - Max Cpi due to \(C_1 = 20\mu\text{F} / 5 = 4\mu\text{F} \)
 - Rule 2: \(F_{\text{pi}} \) should be \(\pm 1 \) octave away from \(Fs \)
 - Actual \(L_1 = 10\mu\text{H} \)
 - Source Impedance \(L_{\text{source}} = 100\mu\text{H} \)
 - \(Fs \) to avoid resonance = 200kHz
 - So Cpi should be bigger than = 280nF
 - Or Cpi should be smaller than = 17nF
 - Rule 3: \(Z_{\text{Cpi}} \) @ \(Fs < 5\Omega \)
 - Cpi >= 160nF
 - Min Cpi Capacitance= 280nF
 - Max Cpi Capacitance= 4\mu\text{F}
 - Actual Cpi Selected = 1\mu\text{F}
 - \(F_{\text{pi}} = 52.8\text{kHz} \)

- **CM Choke Calculations**
 - Calculated CM Choke Inductance \(L_{\text{CM1}} = 0.5\text{mH} \)
 - Selected \(L_{\text{CM1}} \) & Part Number =
 - Calculated CM filter capacitance \(2 \times \frac{1}{2} C_{\text{CM1}} = 9\text{nF} \)
 - Selected \(\frac{1}{2} C_{\text{CM1}} \) & Part No= 2 x 4.7nF